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ABSTRACT: We calculate light-cone distribution amplitudes for non-relativistic bound
states, including radiative corrections from relativistic gluon exchange to first order in the
strong coupling constant. We distinguish between bound states of quarks with equal (or
similar) mass, m; ~ mg, and between bound states where the quark masses are hierarchical,
mq > msy. For both cases we calculate the distribution amplitudes at the non-relativistic
scale and discuss the renormalization-group evolution for the leading-twist and 2-particle
distributions. Our results apply to hard exclusive reactions with non-relativistic bound
states in the QCD factorization approach like, for instance, B, — n.fv or ete™ — J/9n..
They also serve as a toy model for light-cone distribution amplitudes of light mesons or
heavy B and D mesons, for which certain model-independent properties can be derived. In
particular, we calculate the anomalous dimension for the B meson distribution amplitude
¢p(w) in the Wandzura-Wilczek approximation and derive the according solution of the
evolution equation at leading logarithmic accuracy.
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1. Introduction

Exclusive hadron reactions with large momentum transfer involve strong interaction dy-
namics at very different momentum scales. In cases where the hard-scattering process is
dominated by light-like distances, the long-distance hadronic information is given in terms
of so-called light-cone distribution amplitudes (LCDAs) which are defined from hadron-
to-vacuum matrix elements of non-local operators with quark and gluon field operators
separated along the light-cone [, ] and [f, f]. LCDAs appear in the so-called pQCD
approach to hard exclusive reactions [J—fi], in the QCD factorization approach to heavy-
to-light transitions [§], in soft-collinear effective theory [f, [[(], as well as in the light-cone
sum rule approach to exclusive decay amplitudes [[]-[[J] (for a recent review, see [[4]).

Representing universal hadronic properties, LCDAs can either be extracted from ex-
perimental data, or they have to be constrained by non-perturbative methods. The most
extensively studied and probably best understood case is the leading-twist pion LCDA,
for which phenomenological constraints [I§ - [[7] from the 7 — v transition form factor [LL],
as well as estimates for the lowest moments from QCD sum rules [f, [[9, RJ] and lat-
tice QCD [, PJ] exist. On the other hand, our knowledge on LCDAs for heavy B
mesons [B, B3, P4], and even more so for heavy quarkonia [R5, Bg], had been relatively
poor until recently.

Although LCDAs, in general, are not calculable in QCD perturbation theory, their
evolution with the factorization scale (which is set by the momentum transfer of the hard
process) can be calculated and is well understood, both, for light mesons [fj] and for heavy
mesons 3. The situation becomes somewhat simpler, if the hadron under consideration
can be approximated as a non-relativistic bound state of two sufficiently heavy quarks. In
this case we expect exclusive matrix elements — like transition form factors [P and, in
particular, the LCDAs — to be calculable perturbatively, since the quark masses provide
an intrinsic physical infrared regulator.

In this article, we are going to calculate the LCDAs for non-relativistic meson bound
states including relativistic QCD corrections to first order in the strong coupling constant
at the non-relativistic matching scale which is set by the mass of the lighter quark in the
hadron. We discuss twist-2 and twist-3 LCDAs for 2-particle Fock states with approxi-
mately equal quark masses (for instance an 7, meson), as well as 2-particle and 3-particle
LCDAs for heavy mesons (like the B.), where one of the quark masses is considered to be
much larger than the second one (m; > m.). Our results can also be viewed as a toy model
for possible parameterizations of LCDAs for relativistic bound states, like the pion, kaon
or B, meson at a low input scale, which may be evolved to the appropriate higher scales
using the standard renormalization group equations in QCD (or HQET, respectively).

Our paper is organized as follows. In the following section we give a short introduction
to the non-relativistic approximation and collect the definitions and properties of LCDAs



Figure 1: Resummation of potential gluons into a non-relativistic Coulomb wave-function.

for light and heavy mesons. The main result of our paper, the corrections from relativistic
gluon exchange, are presented in section . Here we also derive model-independent results
for the B meson LCDAs gbjg, and ¢, namely the cut-off dependence of positive moments
and the anomalous dimension kernels, and investigate the impact of the 3-particle LCDAs
to the Wandzura-Wilczek approximation beyond tree-level. We discuss the effect of QCD
evolution above the non-relativistic matching scale in section [, including a new result for
the B meson LCDA ¢, before we conclude. Some technical details of the calculation
are collected in an appendix. Some of our results have already appeared in a proceedings
article [Rg.

2. Light-cone distribution amplitudes and the non-relativistic limit

2.1 Non-relativistic approximation

The wave function for a non-relativistic (NR) bound state of a quark and an antiquark with
respective masses mj and mg can be obtained from the resummation of NR (potential)
gluon exchange as sketched in figure [l The solution of the corresponding Schrédinger
equation with Coulomb potential yields

15/

27
(w2 + 5P)

where Kk = m,a;Cr and m, = mims/(m1 + ms) is the reduced mass. The normalization

Yo(p) o (2.1)

of the wave function gives the (non-relativistic) meson decay constant

2V N, w2

T (my+me)t/2

nr = (2.2)
For more details and references to the original literature, see e.g. R9] (also 7).

In this approximation, the B, meson is entirely dominated by the 2-particle Fock state
built from a bottom quark with mass m; = M = my and a charm antiquark with mass
me = m = m,. Consequently to first approximation in the NR expansion, the B, meson
consists of a quark with momentum Mwv, and an antiquark with momentum muv,, where
v, is the four-velocity of the B. meson (v? = 1). The spinor degrees of freedom for the
B, meson are represented by the Dirac projector %(1 + 9¥)75. Similarly, a pseudoscalar 7,
meson is interpreted as a c¢ bound state where both constituents have approximately equal

momenta muy,.



The non-relativistic approximation can also serve as a toy model for bound states of
light (relativistic) quarks. We will in the following refer to “heavy mesons” as ” B” (where
we mean the realistic example of a B, meson, or the toy model for a B, meson) and “light
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mesons” as "7” (where the realistic example is 7., and the toy-model application would be
the pion or also the kaon for m; # my).

2.2 Definition of LCDAs for light pseudoscalar mesons
Following [fll, P] we define the 2-particle LCDAs of a light pseudoscalar meson via

1 2
= . i(upy+upx mx
(TP ) )l0) = =ify [ @Pr ) [ o)+ 575 o).
1
(<P () 2] 195 @(@I0) = fr o [ eHrrIr) g ),
= . ~ ! i(upy+upx) ¢U(u)

(m(P)|q1(y) [y, 2] 075 q2(2)[0) = i fx fir(Pp2 — Puzu) ; du e 3D —3 (2.3)
with two light-like vectors 2, = y,—x, and p, = P,—m2 /(2P -z) z,,, and u = 1—@ denoting
the light-cone momentum fraction of the quark ¢;. The gauge link factor is denoted as

1
[y, 2] = P exp [igs/o dt (y —x) - Aty + (1 — t)x)] : (2.4)

¢x(u) is the twist-2 LCDA, while ¢p,(u) and ¢, (u) are twist-3. For completeness, we
have also quoted the twist-4 LCDA g, (u) which, like the 3-particle LCDAs, will not be
considered further in this work.! All LCDAs are normalized to 1, such that the prefactors
in (B-J) are defined in the local limit  — y. In the definition of ¢, (u), we have included a
factor 3/(D — 1), such that the relation between u, and fi,; from the equations of motion
(see below) is maintained in D # 4 dimensions.

2.2.1 Equations of motion

The equations of motion (eom) provide relations between the matrix elements defined
in (.J). Following [ we obtain

m2
T [ (w) + gn )] = (1 +m2) i G() 4.
pn Bpl0) + [(2—0) o) + 22 ¢;(u)] = (a1 + 1) felu) + ..,
(20— 1) ur b (u) + 557 00 0) = (1 —ma) )+, (2)

where the ellipsis denote contributions from 3-particle LCDAs which we do not specify here.
In the local limit the contributions from the 3-particle LCDAs drop out and integration

!Notice that there are additional two-gluon LCDA for flavour singlet mesons which we will not consider
here, because in the non-relativistic limit glueballs decouple from the ¢g states and the 2-gluon LCDA is
only generated by higher-order relativistic corrections. For the definition of the 3-particle LCDAs, see [EI, E]



of (R.5) yields

fir = pr — (M1 +m2) (2.6)

and

mp —ma

3 (2.7)

! 1
/ duu ¢p(u) = 5 +
0

Notice that the relations (2.5), (.9), (B-]) hold for the bare (unrenormalized) parameters
and distribution amplitudes.

2.2.2 Tree-level result

At tree level, and in leading order of the expansion in the relative velocities, the quark and
the antiquark in the NR wave function simply share the momentum of the meson according
to their masses, p’ ~ m;/(mq + mq)P*. For ”light” mesons this implies?

br(u) = ¢op(u) = gr(u) =~ §(u — up), (2.8)

with ug = my/(m1+me) and @y = ma/(m1 +ms2). Consequently, all positive and negative
moments of the distribution amplitudes are simply given in terms of the corresponding
power of ug. Often, one is interested in the coefficients a,, of an expansion of ¢, (u;p) in
terms of Gegenbauer polynomials,

bn(us 1) = 6ut (1 + Y an(p) CY*(2u - 1)) : (2.9)

n=1

which are the eigenfunctions of the LO evolution kernel, see section [[.J] below. For the
particular form in (2.§), the Gegenbauer coefficients are given by

2(2n + 3)
32+n)(1+n)

2(2n + 3)
32+n)(1+n)

Ay =

CB2(2ug —1).
(2.10)

1
/ du ¢ (u) CP/? (2u — 1)
0

Notice that i ~ 0 at tree-level and the corresponding LCDA ¢,(u) can only be deter-
mined by considering the corresponding one-loop expressions (see below). The tree-level
solutions (P.§) fulfill the eom-constraints from (P.§).

2.3 Definition of LCDAs for heavy pseudoscalar mesons

We define the 2-particle LCDAs of a heavy pseudoscalar B meson following [B], ],

Ty Ot
Lot Loy U0,
af

(2.11)

_ifp(p)M

(01(2)5(2) [2, 0] (he))a(0)| B(Mv)) = !

2This behaviour can also be obtained from the “dense medium limit” in the instanton model @]



where v* is the heavy meson’s velocity, t = v-z and 22 = 0. Here f p is the (renormalization-
scale dependent) decay constant in HQET. The Fourier-transformed expressions, which
usually appear in factorization formulas, are given through

d(t) = /0 Oodw e Wlot(w), (2.12)

where w denotes the light-cone energy of the light quark in the B meson rest frame.
Similarly, according to [B] (see also [B, BJ]), the 3-particle LCDAs in coordinate space
can be defined as

27 (0 |@B( ) [2,uz] gG L (uz) [uz, 0] (hy ) o (0)| B(Mw))
(2) [ﬁ’”{@ﬁ-tw (Fa(tu) — Ty (t,w)

—i 02" Wy (t,u) — 2, Xa(t,u) + 27” Y (t, ’U,)}"}/5:| ,(2.13)
af

with the respective Fourier transform

F(t,u) = / dw/ de e Wt Py €) (2.14)
0 0
defining the four functions F' = {Uy, U4, X4, Ya}.

2.3.1 Equations of motion

The equations of motion again provide relations between different LCDAs. Including the
effect of the 3-particle LCDAs (R.13), we derive

w ()~ m (e +—/ )
= —2) / / (WA(n, &) — Py (n,8) . 2.15
g a0 - ) (215)
The relation (R.17) is trivially fulfilled at tree-level and we will show below that it also

holds after including the a; corrections to the NR limit. In [BI], Kawamura et al. discuss
a second relation which in the massive case reads

(w—l—m)qu( + (w—2A —m) ¢ (w) (2.16)
. d e d oV (n,)
Loag [Can [7F a0+ Xa 9202 [Ty [ F ERERE,

with A = Mp — m;p. We will show below that the equation (2:16) does not hold beyond
tree level, since the integral on the right-hand side involving our result for the 3-particle
LCDA X4 does not converge. This confirms the criticism raised in [24, B4] that (R.14) is
not consistent, since the renormalization prescription of light-cone operators in HQET and
the expansion into local operators do not commute. Notice that in contrast to (R.15), the
derivation of (R.16) involves derivatives with respect to 22 # 0.



If one neglects the 3-particle distribution amplitudes in (P.15), one arrives at the so-
called Wandzura-Wilczek relation which has first been discussed for a massless light quark
in [[ll. The generalization to the massive case reads

w _ 2 B
| an 6500 = 5] = 5 [0 5(0) ~mh(w)] (217)
which again holds for the bare parameters and LCDAs in D # 4 dimensions.

2.3.2 Tree-level result

By the same arguments as for light mesons, at tree-level the quark and the antiquark in a
heavy meson just share the total momentum according to their masses, such that w = m.
In the NR limit, the 2-particle LCDAs of a "heavy” meson are thus given by

gbg(w) ~ ¢p(w) ~d(w—m). (2.18)

Moreover, at tree level, the moments of the heavy meson LCDAs can be related to matrix
elements of local operators in HQET [[]. The zeroth moment (0|G~s ho|B) = —ifpM
determines the tree-level normalization of the distribution amplitudes q@fg(t =0) ~ 1. For
the first moment, one has the general decomposition

(0[(9)s iD" (he)a|B(v)) ~ _iMfp

[(av” +09") (1 +#) 5l - (2.19)

Multiplying by (757vu)sa and taking into account the finite light quark mass in the NR
set-up, the equation of motion for the light quark implies a + 4b = m. The equation of
motion for the heavy quark is obtained by multiplying with v, from which one obtains

a + b= A, independent of the light-quark mass. This implies

_4A—m b— A—m
3 N 3

From this we can read off the first moments at tree-level

a

i hy 4N —m
— 0|q _(in_D)hy|B) =a = ,
7 O G- D)l B .

j « 2A
(01Gs 7 (in—D) hy| B) = 2b + a = ;m (2.21)

(W) ~ (2.20)

(wy_ ~

i
M
where we introduced the light-like vectors n" = z#/t and n!. = 2v* —n". In the non-
relativistic limit A = m, and we obtain

(W) ~m.
Notice that the light-quark mass drops out in the sum
<w>+ + (w>_ = 2A

We stress that the relation between moments of (bﬁ (w) and local matrix elements in HQET
does not hold beyond the tree-level approximation [R3, P4, Bj.



Figure 2: Relativistic corrections to the light-cone distribution amplitudes. The dashed line
indicates the Wilson line in the definition of the LCDAs.

3. Relativistic corrections at one-loop

The NR bound states are described by parton configurations with fixed momenta. Rel-
ativistic gluon exchange as in figure f] leads to modifications: First, there is a correction
from matching QCD (or, in the case of heavy mesons, the corresponding low-energy effec-
tive theory HQET) on the NR theory. Secondly, there is the usual evolution under the
change of the renormalization scale [, BJ]. In particular, the support region for the parton
momenta is extended to 0 < u < 1 for light mesons and 0 < w < oo for heavy mesons. In
this section we collect the results for LCDAs for “light” and "heavy” mesons including the
first-order matching corrections from relativistic gluon exchange

0 . asCr (1
o = o) + = o4 +0(2). (3.1)
3.1 Light mesons
3.1.1 Local matrix elements

We first consider the leading-order relativistic corrections to the local matrix elements
which are given by the vertex-correction and the wave-function renormalization of the
quark fields. We find

NR a,Cr mp—mg . My 9
= 1+ — | — —= In— 2
fr= I [ + = ( 6+3m1+m2 nm2>+(’)(a8)} (3.2)
and
_ m
i = T e + Zgg
asCr (3 2 mp—mg My 9
=my; |1+ —+3In -3 In—+4)+0(aj)|,
47 € mimso mi +mg mo
2
- m
Hr = g — —
Cr (6 2 —
—my [ (2 pm ¢ T2 T g 4 0(a?)] (3.3)
41 € mims mi1+mg M2

where m,; ~ m{® + m$® in the on-shell scheme. Our result for the decay constant is in
agreement with [BA] and the results for u, and fi, are consistent with the eom-constraints

in (20).



3.1.2 The twist-2 LCDA ¢, (u)

Let us start with the case of equal quark masses, e.g. in case of a non-relativistic 7. bound
state, which may also serve as a toy-model for the pion LCDA.3

The first-order relativistic corrections arise from the collinear gluon exchange diagrams
in figure f], where we also have to take into account the wave-function renormalization of
the external quark lines (see appendix [A] for details). The local limit of the light-cone
matrix element (2.) determines the relativistic corrections to the NR decay constant (B.J)
(in this case, the diagrams with the gluon attached to the Wilson-line do not contribute).
The remaining contributions to the NLO correction for the leading-twist LCDA contain an
UV-divergent piece,

1
o), =2 /0 oV (4, 0) $O (). (3.4)

€

which involves the well-known Brodsky-Lepage evolution kernel [f],

V(u,v) = [<1+Uiu> %0(v—u)+<1+ﬁia>

The finite terms after MS-subtraction read

o0 (us ) = 4{<lnm72r+22—u)2 - 1) [(1 * 1/21—u> w82 —w)+lu o ﬂ)] }+

+4{(;‘/(;7:Z;2}++. (3.6)

SN

Here the plus-distributions are defined as

/Oldu{...}+ f(u)E/Oldu{,,.} <f(u)—f(1/2)>, (3.7)
/Oldu{...}++ f(u)E/Oldu{,,,} <f(u)—f(1/2)—f’(1/2) (u—1/2)>. (3.8)

From this it follows that
1 1
| s i) = [ duwold i) —o,
0 0

such that the general normalization conditions fol du ¢ (u) =1 and fol duu ¢r(u) =1/2 are
not changed. Furthermore, our result for the distribution amplitude obeys the evolution
equation

1
L otz ) = 2 /0 0oV (1,0) e (03 1) + O(02) (3.9)

dln

3We should keep in mind, however, that typically non-perturbative analyses from lattice QCD and sum
rules find pion distribution amplitudes that are broader than the asymptotic one, while the non-relativistic
model assumes LCDAs which are narrower. Therefore the application of the toy model to the very pion
case should not be taken too seriously.



n 2 4 6 8 10
NR limit 0 0 0 0 0
NLO (B:) (for oy =0.2) | 0.067 0.011 0.004 0.002 0.001
v&g BI3) (for vz =0.2) | 0.067 0.008 0.001 0.000 0.000

Table 1: The moments ("), at the non-relativistic scale p = m.

An independent calculation of the leading-twist LCDAs for the 7n. and J/i¢ meson has
been presented in [PF]. Our result is not in complete agreement with these findings. In
particular, we find that the LCDA quoted in [RJ] is not normalized to unity as it should
be.

On the other hand, at the non-relativistic scale p ~ m, the distribution amplitude
shows a singular behaviour at u ~ ug = 1/2. As a consequence, the convergence of the
Gegenbauer expansion is not very good at the non-relativistic scale, with the Gegenbauer
coefficients a,, in (R-I0) only falling off as 1/y/n (and alternating signs). A better charac-
terization of the LCDA at p ~ m is given in terms of the moments

1
(€M) n (1) = /O it (2u — 1) (3 1) (3.10)

which are linear combinations of Gegenbauer coefficients of order < n. This corresponds
to an expansion of the LCDA in terms of a delta-function and its derivatives,

(-1
n!

S 500 (2u — 1) (€70 (). (3.11)

Or (u; N) =2 Z
n=0

Results for the first few moments ("), are shown in table [] for the strict non-relativistic
limit, including the NLO corrections from (B.6) and comparing with the non-relativistic
corrections of order 1)12\IR discussed by Braguta et al. in [2g]. Keeping first-order corrections
in UI%IR only, this formally amounts to the replacement

2

O (w) = 3(u—1/2) + DR 5" (u — 1/2) + O(vikp) (3.12)

In particular, this fixes the moment (£2), = UI?,’R. The authors [R] propose a resummed
formula,

o) — o (u— ) g (L) (3.13)

UNR 2 2

The comparison in table [] shows that for vip ~ as(m) ~ 0.2, the effect of the viy
corrections is qualitatively and quantitatively similar to the a; corrections from (B.§).
It is also interesting to determine the correction to the first inverse moment of the
LCDA which appears in QCD factorization formulas
1 My, . 2
(WD (p) = / du M ~3 <2.73 +1.08 In %) . (3.14)
0

— 10 —



Finally, we quote the result for the derivative of ¢, (u) at the endpoints

a,Cr < 2

8Os =~ (1) = 22 4+wm%§+omﬁ (3.15)

which is sometimes discussed in the context of non-factorizable contributions to hard ex-

clusive reactions [B7, Bg.
For non-equal quark masses, the NLO corrections to the MS-renormalized twist-2

LCDA are given by
(b(l)(w ) =2 ln—'u2 -1 1+ ! ﬁ9(u —u) + v
K\ H) = m2 (ug — u)? ug —u /) ug 0 U < o .

u(l—u)} , < ug )
+4 —= 4+ 26 (u —ug) | 2uo(1l — ug) In +2ug—1].
{(UO—U)z 4+ ( 0) 0( 0) 1 —ug 0

(3.16)

The first moment now becomes

asCp 4 p? 7(1 — up) 5 38 ~
g [(—glnugm%{— lnuo—g uo—(ug < ap)| -
(3.17)

1
| duwonctusn) = o+
0

3.1.3 2-particle LCDAs of twist-3

The twist-3 LCDAs for the 2-particle Fock states are obtained in the same way as the twist-
2 one. After absorbing the corrections to the local matrix elements into the renormalized
values for p, and fi,, we obtain a UV-divergent piece

<1+u01—u> e(uo_uH(uZ:Zo)L (3.18)

and a finite NLO contribution to the twist-3 LCDA associated to the pseudoscalar current

O (s 1) :2{<lnm§<(+2—102_1> <1+u01—u> o =) (”Z:Z())”
.

1

+ dug(1 — up) <{m}++ + 8 (u—ug) In 5 ﬁ0u0> p {%L .
(3.19)

2

qbl(’l) (u)|div. = g

In particular, the first moment of ¢,(u) now reads

! asCr M2
/ du u dp(u; ) = up + 1 [(—3 In —5- + 6ug Inugp — 4> uy — (ug < uo)] . (3.20)
0 T mK

which is in agreement with the eom-constraint from (R.7). At the endpoints we now have

asC 2+ 2u 2
¢p(0§ ,U) = r < 0

I 2
In— —2 21
el Gt )+0w9 (3.21)

— 11 —



and similar for ¢,(1; 1) with m; < mao, i.e. up < ug. For the twist-3 LCDA associated to
the pseudotensor current (whose normalization factor starts at order ay), we simply have

L 0(ug —u) + ( v >
U Uy < Ug
In contrast to the other 2-particle LCDAs in (R.g), we find that ¢,(u) is not given by a
delta-like distribution in the NR limit and has support for 0 < u < 1.

Po(u) =2 + O(as). (3.22)

3.2 Heavy mesons

The calculation of the LCDAs for a B. meson (which again can be considered as a toy
model for LCDAs of B, mesons with m; > my) goes along the same lines as for the 7.
case. However, important differences arise because the heavy b-quark is to be treated in
HQET which modifies the divergence structure of the loop integrals (notice that in our set-
up, a charm quark in a B, meson is treated as ”light”). As a consequence, the evolution
equations for the LCDAs of heavy mesons [BJ] differ from those of light mesons.

3.2.1 The LCDA ¢%(w)

Let us first focus on the distribution amplitude (bjg (w) which enters the QCD factorization
formulas for exclusive heavy-to-light decays. In the local limit we derive the corrections
from soft gluon exchange to the decay constant in HQET. We find

~ __ /NR CYSCF < 1% ) 2
= 1+ —— (3ln— —4 . .2
fa(p) = far [ + i 3 o + O(a3) (3.23)
Notice that the decay constant of a heavy meson exhibits the well-known scale dependence

in HQET [BY. The remaining NLO corrections to the distribution amplitude ¢}, (w) contain
an UV-divergent piece (details of the derivation can be found in appendix [B))

el =% [y ), e [ (1w k)]

e lm(m—-—w) w(w-—m)

(3.24)

and a finite piece

S (O[] ) G s,
40(w—2m) d(w—m) <1 12 ,u_2 I pu?  3r? )
(w—m)? m 2

L,

— + — 3.25
m? m2 + 4 (3.25)
with an analogous definition of plus-distributions as in (B.7), (B.§). Notice that, in order to
separate the UV divergence coming from the longitudinal momentum integration, we have
introduced an auxiliary parameter 1y = 2m to split the support region of the LCDA into
two parts. The distribution amplitude in (B.25) obeys the evolution equation

d
dlnp

a,C ©
Shlwp) = - 2 /O a4 (w,ws 1) 6355 ) + O(02), (3.26)
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where the anomalous dimension ’ysrl)(w,w’ ;i) can be read off the UV-divergent terms

in (B.24) and is given by [J]

1 i 0w —w) Olw—uw)
O (w, s 1) = (rg}gsp I - 2) 5w — )~ Thyw |5 R ol (3.27)

with T4, = 4.

In contrast to the light meson case, the normalization of the heavy meson distribution
amplitude is ill-defined. Imposing a hard cutoff Ayy > m and expanding to first order in
m/Ayy, we find

Auv
/ dw ¢f(wip) ~ 1 —
0

2 2

i T
1 -
R VO A T

aZgF [lw 2 }-1-(9(@2)—1—0(771/1\(}\/) (3.28)

and similarly for the first moment

Ayv
1 sC §
/ dw w ¢ f(w; p) ~ a47TF [2 K 6] + O0(a?) + O(m/Ayy) . (3.29)
0

Auyv

2
AUV

The last two expressions provide model-independent properties of the distribution ampli-
tude which have been studied within the operator product expansion in [Bj]. Our results
are in agreement with these general findings.

We finally quote our result for two phenomenologically relevant moments in the fac-
torization approach to heavy-to-light decays [P4, Bj]

7 +(o-
()\B(,u))_lz/dw M:l<l—@ Fln2u—2—ln:ﬂé—22+3—ﬂ2—2]>+(’)(ag),

w m 47 |2 m? 4
(3.30)
and
op(p) = J(l)w) —m2 asCr [8¢G] + O(a?) (3.31)
B m 47 877
where ¢; = > o2, n~/ is the Riemann zeta function and we defined
¥ +
() \ _ Pplwip) o p1n
op’ (1) = Ap(p) /dw — [lnw] . (3.32)
0
The leading-order scale-dependence of these quantities is in general given by
d}\él OZSCF (1) -1 2
T = i (i os —2) A5' +0(a?), (3.33)
dop asCr (1) 2 (2) 2
T =1+ g Tk ((0p)? = o)) + O(a2). (3.34)
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In particular, in the non-relativistic limit agl) (n) = (op(p))" and therefore the ay cor-
rection on the right hand side of (B:31]) does not depend explicitly on In . For arbitrary
values of n, we find for the scale dependence of the logarithmic moments

dagl) . (n—l)+ OZSCF F(l) (1) (n) (n+1 +on 'nz/%] C2]+1 n 27) +(’)(a2)
dlnp 75 4r owp |98 7B n—2j)! 87

(3.35)

where [z] denotes the greatest integer less than or equal to .

3.2.2 The LCDA ¢ (w)

A similar analysis can be performed for the other 2-particle LCDA of the B meson. We
now obtain for the UV-divergent piece (see also appendix [B)

2 {o<m—w>]++ge<m—w> L2 [ew—m)L

O (wip |di"~ e (m—w) € m €

€2

—8(w —m) [i + % (1 +1In :L—ZH . (3.36)

The finite contributions read

6% (win) =2 Kln [ﬁ] —~ 1) %} ot 2 <ln [ﬁ} - 1> me_ w)

(o] ) 2] ]

O(w —2m) 2 2

+ 4m 3T
(w —m)?

1
—5(w—m)<§ln2'u +In “—+T+6> (3.37)

The distribution amplitude in (B-37) obeys the evolution equation

SC o / / — /
b (ws 1) = —C“—F/0 d’ A (w,0'; 1) 65 (s 1)

dln,u 47

sCrp [

(1)(

where the anomalous dimension kernels v

w,w’; u) and Vili(w,w’; i) can be read off the

UV-divergent terms in (B.3q) (see appendix B for details)

O(w —w
YD (w, s 1) = AP (w, w5 ) — T % , (3.39)
mé(w —w
Y w03 ) = —TG [7(& )} ' (340)
+

Among others, the knowledge of v_ is essential to check the factorization of certain correla-
tion functions appearing in sum-rule calculations for B —  form factors within SCET [E(].
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Another new result are the first positive moments of the LCDA ¢;(w) as a function
of a hard cutoff Ayy > m,

Ayv o 9 9
— . ~1 asUp 2 ,LL 1% e
/ dw ¢pp(wsp) ~1 g [21 A%v ln—A%V—i- 1
0
+ 0(a?) + O(m/Auv), (3.41)
) Ayv o 9
— / dw w ¢p(w;p) =~ GEE o 'UT +2[ +0(a?) + O(m/Avv), (3.42)
Auv 47 Afy
0

which are again expected to be model-independent. Actually, these moments can already be
derived in the Wandzura-Wilczek approximation. From the solution of (2.17) in D = 4 —2¢
dimensions

o) = (-0 [ an I (2) optmn) + Do), (a3

we obtain the bare (unrenormalized) moments

m— . NTop(A) +(1—€) (Wh)p
(W"p =~ ntl—e

which result in the same MS-subtracted moments as in (B:41), (B-42), i.e. the 3-particle
LCDAs only contribute subleading terms to these moments in our case.

: (3.44)

We finally quote the quantity

G50 = 2290 Ly o), (3.45)

which plays a role in sum-rule calculations for heavy-to-light form factors [[d, [1].

3.2.3 3-particle LCDAs and equations of motion

In order to verify whether the equations of motion (R:175), (B-I6) hold after including first
order relativistic corrections, we have to compute the 3-particle LCDAs which arise at
order « in the non-relativistic limit. Without going into details, we quote our results for
the bare LCDAs that enter (R.15), (2.14)

m 2
Ty (w,£) = 0P “){( sl 1) € 0(m—¢) (3.46)

4m 2m
2
- <1 —Hn%—i—l) m?’é({—m)},

+ln£—2+1> £20(m —¢)

—(1—1-111:1—22—#1) m35(§—m)},

Xa(w,€) = ‘”ﬁp[ (1+1 5—2>§6<w m) — 5(“_2—””3“)

{am=30 (24ms) ~e| eotm—9 - (Frm s+ 1) mosie - m) ]

\I’A(UJ, g) =

47 2m

ozsCF5(w—m+£){ <1

— 15 —



n 2 4 6 8 10
LL (p=1/5) |0.126 0.048 0.025 0.015 0.010
LL (p=1/25) | 0.173 0.070 0.038 0.024 0.016
asymptotic 0.200 0.086 0.048 0.030 0.021

Table 2: The moments (£"), as a function of the evolution parameter n = as(p)/as(m).

We show in appendix [J that the eom-constraint (R.19) is indeed fulfilled to order as. On
the other hand we find that (R.I§) does not hold beyond tree level since the ¢-integral
involving our result for the 3-particle LCDA X4 is ill-defined for £ — oco. Since we again
expect the radiative tail of the 3-particle LCDAs (which determines the large-§ behaviour)
to be model-independent, the failure of (R.16) beyond tree level should be considered a
general feature.

4. Renormalization-group evolution

In physical applications, the light-cone distribution amplitudes are required at the hard-
scattering scale p which is set by the momentum transfer in the exclusive reaction. The
evolution from the “soft” scale m to the hard-scattering scale p resums large logarithms
Inz2/m?2. In this section we study the evolution of the NR distribution amplitudes to
leading logarithmic (LL) approximation. For ”light” mesons we focus on the twist-2 LCDA
¢x(u) and for "heavy” mesons we consider the 2-particle LCDAs ¢5(w) and ¢5(w).

4.1 The twist-2 LCDA ¢, (u)

The evolution of the twist-2 LCDA ¢, (u;p) is described by the Brodsky-Lepage ker-
nel (B.5). To solve the evolution equation (B.9), one projects the distribution amplitude
onto Gegenbauer polynomials (R.9) which are eigenfunctions of the LO evolution kernel.
The respective coefficients are obtained from (R.1() and have the LL evolution

Qa —n/Bo
an(p) = an(po) <ﬁ> ; m=Cr |3+

n+1 1

2
(n+1)(n+2) _4;3 - (1)

with By = (33 — 2ny)/3 (for illustration, we will use ny = 3 in the numerical examples).
For very large n > 1 we have v, ~ —4Cplnn, which implies that the effect of higher

Gegenbauer coefficients becomes less important at high scales. Notice that the result for
_ as(p)
~ as(po)’

the LL evolution only depends on the ratio of coupling constants 7(1) irrespective
of the individual values for p and pug.

We show in table f] the LL evolution of the moments (¢"), defined in (B.10]), starting
from the tree-level result in the NR limit, ¢, (u;pug = m) = d(u — 1/2), for two values
of n = as(u)/as(m) and in the asymptotic limit. In contrast to the moments (£"),, the
phenomenologically important 1/u moment is a linear combination of an infinite number

of Gegenbauer moments,

(W ™)) =3 as;(p). (4.2)
j=0
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In order to study the evolution effects from the non-relativistic scale, where (u=1); (g =
m) = 2, towards g > m, it will therefore be crucial to control the effects of higher
Gegenbauer coeflicients. For this purpose, we find it convenient to consider model parame-
terizations which are obtained from a slight modification of the strategy developed in [12].
Our ansatz involves three real parameters a > 0,6 >0, 0 <t. <1,

3u

dx(u) I'(a; —In tc)

"t (—In¢)e? [f(2u — 1,0t ) + f2u—1, —itl/b)] (4.3)

with T'(a;b) fb dt t* et and the generating function of the Gegenbauer polynomials,

f&,0) = 203/2 (4.4)

§ 259 + 62)3/2

Performing the ¢-integration in ([L.J), one finds

W= 6un 3 [ (1 D _Uxnfbnte) ) 1)‘“] CH2(2u— 1), (4.5)
n=0

I'(a;— Int.)

from which one reads off the Gegenbauer coefficients a,qq = 0 and
W (=1)"? T(a; —(1 4 n/b) Int,)
" (n/b+ 1) I'(a; — Int,)

For t. — 0 our ansatz reduces to the asymptotic distribution amplitude and for ¢, — 1

for n even. (4.6)

it is equivalent to one of the models discussed in [iJ], where the Gegenbauer coefficients
show a simple power-like fall-off (in this case with alternating signs). As observed in [,
for values of a < 3, the model induces some pathological behaviour at w = 1/2. In our
ansatz this is regularized by the cut-off parameter . < 1. The qualitative behaviour of the
Gegenbauer coefficients for large n now depends on t..:

e For moderately large values of n, we have
l<n <K ngit =—-b(1+1/Int.) : J|a,| =~ (n/b)™, (4.7)
i.e. a power-like fall-off with n as in [J].
e For asymptotically large values of n, one obtains

b(—Int.)* L ¢/
['(a;—Int.) n ’

i.e. an exponential fall-off with n, which renders the contribution of very high Gegen-

(4.8)

n > Nerig - |an| =~

bauer coefficients irrelevant.

We now reconsider the evolution of the tree-level result in the NR limit ¢ (u; o = m) =
§(u—1/2) and fix the model parameters (a, b, t.) in (f.3) from the first three non-vanishing
Gegenbauer coefficients using (.10),

a ~ 0.3962

az(m) ~ —0.5833 b~ 0.8045
as(m) ~ +0.4583 = (4.9)

te ~ 0.9993
ag(m) ~ —0.3906
Nerit = 1149
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The fact that a < 1 and ne; > 1 reflects the bad convergence of the Gegenbauer expansion
in the NR limit. Still, the model parameterization reproduces the Gegenbauer coefficients
with n < nqi and the value of the first inverse moment (u_1>7r to a very good accuracy
(see the first line in table f).

The same strategy can be applied for scales p > m. The LL evolution towards larger
scales depends on 7; = as(p;)/as(m). For illustration, we consider 9 = 1/5 and 72 = 1/25

and obtain
o1 a ~ 1.2679
az(fin) =~ _8'1033 b ~ 0.8708 10
“45’“‘13 = +O'0679 =t~ 0.9811 (4.10)
a ~ —(0.
6l Nerit, =~ 40
and
0.0800 a ~ 2.1451
az(p2) ~ —0. v b ~ 0.8966 1
a4(,u2) ~ +0.025 = t, ~ 0.9418 ( . )
ag(p2) ~ —0.0118
Nerit, ~ 14

We observe that the parameter a increases under evolution, which is related to the growth
of the anomalous dimensions for larger values of n, leading to a steeper fall-off of the
Gegenbauer coefficients at larger scales. Effectively, for moderately large values of n, one
has

4CF

a(p;) = a(m) — T Inmn; . (4.12)

The parameter b is only slightly increasing while t. is decreasing under evolution. The
critical value of n is quickly decreasing from nei ~ 1149 at u = m to ngy ~ 14 at
i = pa. Figure B shows the evolution of the model LCDA as a function of u. For n =1/5
the functional form still “remembers” the non-relativistic profile, while for n = 1/25 it is
already close to the asymptotic form. Table fj] compares the first few Gegenbauer coefficients
using the exact projection of the delta-function and the model parameterization ([.3). We
see that the differences are tiny and the model gives a good approximation. We also
quote the result for the first inverse moment which slowly evolves from the NR value,
(u™H (o = m) = 2, towards the asymptotic value (u=!) (u — o00) = 3. We clearly
see that the model gives a better description for relatively low scales than a truncated
conformal expansion (P.9) with n < 6 (i.e. with the same number of input parameters as
our model). The latter can be improved, however, by considering the averaged moment

jmax jmax_ 1

) = o (a0 D x| (113)
j=0

=0

which accounts for the alternating sign behaviour of the Gegenbauer coefficients. Using
this improved truncated conformal expansion, we find that the 1/u moment is given by
(u™l), = (2.04,2.57,2.82) at respective scales (m, ju1,us), which is very similar to the
predictions of the model parameterization (see table [).
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az a4 ag as aio a2 ai4 aie <U_1>7r

exact (n =1) -0.583 | 0.458 | -0.391 | 0.346 | -0.314 | 0.290 | -0.271 | 0.255

model * * * 0.346 | -0.314 | 0.289 | -0.269 | 0.253 | 2.00
conformal exp. * * * (truncation n < 6) 1.45
exact(n =1/5) |-0.216 | 0.108 | -0.068 | 0.048 | -0.036 | 0.029 | -0.023 | 0.020

model * * * 0.048 | -0.036 | 0.028 | -0.023 | 0.019 | 2.55
conformal exp. * * * (truncation n < 6) 2.47
exact(n = 1/25) | -0.080 | 0.025 | -0.012 | 0.007 | -0.004 | 0.003 | -0.002 | 0.002

model * * * 0.007 | -0.004 | 0.003 | -0.002 | 0.001 | 2.81
conformal exp. * * * (truncation n < 6) 2.80

Table 3: LL evolution of the first few Gegenbauer coeflicients starting from the NR distribution
amplitude ¢, (u) = §(u—1/2). For each value of the evolution parameter n = a; (1) /as(m) we show
the results for the exact expression, the model parameterization () and a truncated conformal
expansion (£.9) with n < 6. We also quote the value for the first inverse moment (u™=!).

(pﬂg(l:t; M)
6
5
al
3
2
1

el

P
S

Figure 3: Approximation of the NR distribution amplitude ¢, (u) = §(u — 1/2) in terms of the
model parameterization ([.d) (thick solid line) and its evolution for n = 1/5 (dashed line) and
n = 1/25 (dotted line). The asymptotic LCDA is shown for comparison (thin solid line).

4.2 The LCDA ¢} (w)

The evolution of the LCDA qSE(w; w) for scales m < pu < M is described by the Lange-
Neubert kernel (B.27).* The solution of the evolution equation (B.2§) can be written in
closed form as [BY]

B re-—  dw’ ws\? w w
Ol (wip) =e” 2V‘”M/O — 95 o) <—>> —<2F1(1—g72—g;2; <),

w> w>

I'(g) 1o
(4.14)
where w. = min(w,w’) and ws = max(w,w’). The evolution is controlled by the functions
as(p) d e do!
a a
V=V, = — /—Fcus o / +v(a) |, 4.15
s (o) as (o)

“Notice that above the b-quark mass scale one should match the LCDAs in HQET onto LCDAs in QCD,
see e.g. [@]
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Figure 4: Evolution of the heavy meson LCDA ¢} (w;pu) starting from the tree-level result
o5 (w; o = m) = §(w — m), where we assumed a(m) = 1 (thick solid line). The curves (dashed,
dotted, thin solid line) correspond to n = as(u)/as(m) = 1/2,1/5,1/10, respectively.

2
with Teysp o %, y —O‘S;F , B~ —0‘5—5‘) (we use ny = 4 in the numerical examples) and

as (i)
Lensp(@) 2CF
= ) = d P o~ 1
9= 9(, o) /a 5(a) 5 "

as (o)

s (o)
) (4.16)

The hypergeometric function 9Fj(a,b;c; z) has the series expansion

L = Ta+n)Irb+n)l(c) 2"
2Fi(a, b c; 2) = Z T(a)L(O)T(c+n) n!’

n=0

Starting from the tree-level result in the non-relativistic limit ¢} (w; uo = m) = 6(w — m),
we obtain for scales p > m the relatively simple expression

I'(2 —
_ eV—2~/Eg ( g) (w_>>9w_< 2F1(1_972—g;2;w—<>, (4.17)
(9) w>

tree T m W

m ¢ (w; )

where now w. = min(w, m), ws = max(w,m), g = g(u,m) and V.= V(u,m). Fixing the
value of as(m) at the NR input scale, we may study how the shape of (bJES (w; ) is changed
by evolution effects. In figure ] we have plotted (f.17) for as(m) = 1 and three different
values of n = ag(u)/as(m). As expected, the evolution drives the initial delta-function
shape towards a flatter distribution. In the double-logarithmic plot on the right-hand side
in figure [|, we may read off the asymptotic behaviour of qSE(w; w) for w — 0 and w — oo.
As argued on general grounds [RJ], the LCDA develops a linear behaviour for w — 0,
whereas for w — oo it tends to fall off slower than 1/w at higher scales. This can also
be seen by comparison with figure f], where we plot the evolution of another LCDA with
initial condition ¢} (w; o = m) = w/m2e=«/™.

In figure [l we show the corresponding evolution of the phenomenologically relevant
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Figure 5: The same as figure ] with initial condition ¢, (w; po) = w/m?e~“/™ (thick solid line).
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Figure 6: The moments Ap(u)/Ag (1) and op(u)—In 11/ o as a function of the evolution parameter
n = as(p1) /s (p10). The solid line refers to the initial condition ¢} (w; o = m) = §(w —m) and the
dashed line to ¢} (w; po = m) = w/m? e=*/™ | where we assumed ag(m) = 1.

moments Ag(p) and o(p) defined in (B-30), (B-39). From ([.14) we find the closed formulas

L v L mg) [Fde (W
AB(M) - ! gf(1+g)/0 w <ﬂ0> ¢B( al‘O)) (4.18)

O-B(lu):g(l_g) 4F3(17171_gv2_g727272a1)

3F(1—-g,1-¢9,1-9;2,2—g;1)

g
1—g

S ) T2 G) v

In general, the evolution of the moments Ap and op thus depends on the shape of the LCDA
¢} (w) BI). For our examples, ¢} (w; o) = 6(w—po), respectively ¢f(w; po) = w/pd e</Ho,
the w integration can be performed explicitly, leading to relatively simple analytic expres-
sions. It is also possible to approximate the factors (w/up)? =1+ g In(w/p) + ... In this
approximation, the evolution for the moment Ap(u) can be entirely determined in terms
of Ag (o) and o (o), see also [P4].

4.3 The LCDA ¢4 (w)

The evolution of the LCDA ¢ (w; i) is somewhat more involved, because of the possible
mixing with the 3-particle LCDAs. In addition, for a non-vanishing light quark mass m # 0,
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we have seen in (B.3§) that the LCDA ¢} (w; u) mixes into ¢5(w; i). In the following, we
concentrate on possible applications in realistic B, decays (where we can set m = 0),
neglecting the contributions from 3-particle LCDAs which is left for future work. In this
approximation, the solution of the evolution equation

d — . as;Cr

terms with m # 0
+

contributions from 3-particle LCDAs

o r (1) /. — . 2
dn /0 dw' v (w,w's 1) (W' p) + O(ag)

(4.20)

can be obtained in a similar way as for ¢ (w; u) [, B]. The details of the derivation can
be found in appendix [J. As a result, the solution for ¢5(w; p) can be written as

_ B Nl1-—g) [®ds ws\? We
. ~ oV 27E9 ,. _ _
@B(wau) = e (g) /0 ¢B(w 71“0) 110 2F1 (1 g, 1 9, 17 w ) .

T W> >
(4.21)

In figure [] we illustrate the evolution of ¢ (w; p) for three different initial conditions at
the scale pg = m:

® ¢p(wipo) = d(w —m),
e ¢p(w;po) =0(m —w)/m,
o ¢pp(w;po) = 1/mew/m,

The first example corresponds to the strict non-relativistic limit (where the neglect of the
light quark mass in the evolution equation may be considered as inconsistent). The second
and third example follow from the Wandzura-Wilczek relation (R.17) for the initial LCDAs
¢%(w; o) considered in the previous subsection. While the behaviour of ¢ (w; i) at small
values of w depends on the model for the initial distribution, the radiative tail for large
values of w is again universal. More precisely, the solution (f£.21]) of the (approximate)
evolution equation suggests that ¢ (w;p) also falls off slower than 1/w at higher scales,
while the slope of the LCDA at w = 0 tends to vanish under evolution, independent of the
initial behaviour of the distribution amplitude.

5. Summary

Non-relativistic g bound states have been used as a starting point to construct light-cone
distribution amplitudes for light mesons in QCD and heavy mesons in HQET. At the non-
relativistic scale, the leading 2-particle distribution amplitudes can be approximated by
delta functions, fixing the light-cone momenta of the quarks according to their masses.
After including radiative corrections from relativistic gluon exchange, the distribution am-
plitudes cover the whole physically allowed support region, 0 < u < 1 for light mesons and
0 < w < oo for heavy mesons. In this paper, explicit expressions for 2-particle distribu-
tion amplitudes of twist-2 and twist-3 for ”light” mesons (with quark masses m; ~ ma)
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Figure 7: Evolution of the LCDA ¢ (w; ). Notations and conventions as in figures @, E The
initial conditions at the scale 19 = m are ¢ 5 (w; f1o) = 0(w—m) (upper row), ¢ 5 (w; o) = f(m—w)/m
(middle row) and ¢ (w; po) = 1/me=“/™ (lower row).

have been calculated to first order in the strong coupling constant. In the same way,
next-to-leading order expressions for the 2- and 3-particle distribution amplitudes have
been derived for "heavy” mesons (where m; > mg). We also studied the evolution of the

2-particle distribution amplitudes under change of renormalization scale.

Our results apply to the physical situation of a hard exclusive reaction, that involves
bound states of heavy bottom or charm quarks, with large momentum transfer, for in-
stance, B. — nlv P27, B4-E7), ete™ — J/¢n. [§-F]) or v*v — n. [BF). Moreover, from
the divergence structure of our explicit next-to-leading order results, we could derive cer-
tain model-independent properties which also hold for bound states of relativistic quarks.
In this way we used our calculation as a toy model to derive new results for the B meson
distribution amplitude ¢, as the cut-off dependence of positive moments, the anomalous
dimension kernel and the solution of the evolution equation in the Wandzura-Wilczek ap-
proximation. The toy model also allowed us to address an issue that has been controversial
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in the literature, i.e. the question if the constraints from the equations of motion hold
beyond tree level in the heavy meson case.
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A. One-loop corrections to ¢, (u)

We briefly summarize our results for the individual diagrams in figure [l in the light meson
case (in Feynman gauge). For simplicity we present the results for the leading-twist LCDA
¢r(u) and stick to the case m; = my = m.

A.1 Vertex diagram
Starting from the NR limit ¢ (u) = d(u — 1/2) and performing the loop-integral in D =
4 — 2¢ dimensions, one obtains for the first diagram in figure |4 the distribution

2evE ¢ u? — du —
I(u) x 4T(c) <#j2u>2> <1 . ﬁ) [wO(1 — 2u)+a0(2u—1)] . (A.1)

The integral contains an UV-divergence reflected by I'(¢). The IR-divergence at u = 1/2
can be isolated with the help of a plus-distribution which we introduce via (B.§). With this
we obtain

1 2 4u? — 4u —1
I,(u) x4 [(E +1In m2(1lu— W A= 2up > [wf(1 —2u) + a6 (2u — 1)] »
2
+ <§—|—3ln%—2> S5(u —1/2). (A.2)

Notice that the term with ¢'(u — 1/2) vanishes due to the symmetry u < @ in the equal
mass case (the “4+7"-distribution actually coincides with the usual “+7”-distribution in
this case). The local term determines a correction to the decay constant and does not
contribute to ¢ (u).

A.2 Wilson-line diagrams

For the second diagram in figure [} we obtain

1/2 2,78 .
Iy(u) x 8T(¢) /0 dv <m2ﬁ 120)2> 59— 1 [0(u—1/2) —d(u—wv)]. (A.3)

Convoluting with a regular test function, we get

/01 du f(u) Ip(u) o /01 du f(u) [w <% +ln#_22u)2>}+- .

The other Wilson-line diagram in figure f] is obtained from I, by symmetrization u — .

— 24 —



B. One-loop corrections to ¢%(w)

In the following we present our results for the diagrams in figure f] in the heavy meson
case (in Feynman gauge). We compute the first order corrections to the NR limit at the
matching scale y ~ m starting from qﬁfg(win) = 0(win — m), and the general anomalous
dimension kernels related to the renormalization of ¢} (w; u) and ¢z (w; ). The latter are
extracted from the UV-divergent parts of the diagrams, where we consider arbitrary input
functions qﬁfg(win) and also keep track of the light quark mass m # 0. Notice, that a
possible mixing of the 3-particle LCDAs into ¢5(w;p) is not considered. Some care has
to be taken when performing the collinear limit (which amounts to setting the transverse
momentum of the incoming light antiquark to zero).

B.1 Vertex diagram
The loop-integral in the first diagram of figure P reads

IF(w) d(w — win +n_1)
“ — [ dwin [ |dl - - - B.1
(Ia_(w))oc / ~ /[ ][v-l—l—zO][l2+10][(l—/<;)2+10] (B-1)
m2 . .
e () e (i)
m nel = B e (- - 1) ) \9nlen)

where wj, = n_k with k* being the momentum of the incoming spectator quark and k* —[*

is the spectator-quark momentum after the interaction with the gluon. We also performed
the collinear limit k; — 0, which requires to keep terms of order k; -1,/ k:i

Let us first consider the fixed-order corrections to the NR limit, where (bfg(win) =

d(win —m). Then the loop integrals simplify according to

2m — nZl

I (@) o /[dl] [ 1+ 40] 2 + 70] [z?jF— 2mu -1 + 0]

Performing the loop-integrals in D = 4 — 2¢ dimensions, one is left with the distributions

IF(w) o QwF(1+€)< “267}2)2)6{( 2 __Hmow) H(W_m)}

@ (m—w m—w)? m(m-—w) ww-—m)

dw—m+n_l). (B.2)

ke R e e e e R rri
+2<%+1n7‘7‘1—22—4> 5w — m), (B.3)

(m—w)?2 mm-—w) mw—m)

|
ol nl ] ) ] st

6{ 2 O(m — w) H(w—m)}

e (m — w)? (m —w)?
[t o [ (s @
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The integration over w determines the local vertex correction to be absorbed into the decay
constant

/oodw.ri(w)oc §+31n”—2—2 (B.5)
i 2 - — : .

Focusing now on the UV-divergent contributions to the integration kernels in the gen-
eral case, we find

w)‘div' x O(%), (B.6)

F@gy, 2 [ o (B2 o)+ 0(e). B.7)

€ Win

Notice that only the kernel in I, receives an UV-divergent piece, which can be traced back
to the appearance of a factor (n,l) in the numerator of (B.1)). The fact that the kernel of
I} is UV-finite is in line with the findings of [23].

B.2 Wilson-line coupling to heavy quark

In this case there is no mixing between qﬁg and ¢4 since the light-quark propagator is not
involved

i (w— wm+n l)—6(w—win) 4 .
I x —/dwm /dl o 11 0] 2 + 0] o5 (win) - (B.8)

Inserting the non-relativistic LCDAs and performing the (n4l) and [ integrations, one is
left with the parameter integral (k = —n_I[)

o0 207\ S(w—m —k) — S(w—m
Igt(w)oczr(e)/o dk (“k; > dt k}i dt ). (B.9)

Notice that the remaining integral induces an additional UV-divergence, which has to be
isolated by introducing appropriate plus-distributions. We find

el

1 1. pu 1, o pu?  3m?
‘(?2*21“—2*5“1 mr ) o ). (B.10)

The UV-divergent contribution for I," corresponds to the result for the diagram (D1)
in R (with o = m). The UV-divergence from k — oo is a peculiarity of the heavy
meson wave function. It is related to the cusp-anomalous dimension involving the heavy
quark (characterized by a time-like vector v*) and the soft Wilson line (characterized by a
light-like vector n*). The resulting 1/€2 terms are universal for ¢}, 5 and ¢p,

)] w—(é +omnt ) P ()

€

+2 [ o [M] (65 (wi) ~ 65@)] +O(). (B

W — Win
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B.3 Wilson-line coupling to light quark

In this case the loop integrals mix qﬁj{; into qﬁg (but not vice versa),

w1n+n 1) — 0(w — win)
( ) / e / S z — k)2 + i0] [ + i0]

Win — 714 0 &b (win)
: : . B.12
qET (1—%)) () e

Inserting the non-relativistic LCDAs and performing the (n4.l) and [ integrations, we find
(k=n_l)

Fw) x2r(e) [ e ™= <“2]:;E>E Ok —m +w) = d(w—m) (B.13)

k
-2 | (2o [ m Al o 44) o)

I7 (w) o 2T(e) /Omdk <“26VE> 0k —m+w) -

k2 k
2 J—
S bim=w)| (B.14)
€ (w—m)? m-w |,
The UV-divergent contributions to the integration kernels are identified as
w O (win —
(@)] gy, ¢B /d Win [W—))] (05 (win) — o (w)] +O(), (B.15)

2 2 in
3 w)‘div. X EQ%(W) + E /dwm |:(CL}7

w)
(Win )
2 mb(wpn —w
2 [ o P2 (o) - opw] + OO (B10)
in

Our result for I1 is in line with [23]. In particular, there are no additional UV-divergences
related to cusp anomalous dimensions since the light-quark and the soft Wilson line are
characterized by the same light-cone vector n*. For a non-vanishing light-quark mass, the
result for I implies that the LCDA qﬁg mixes into ¢ under evolution. In the massless case,
however, qﬁg and ¢ evolve independently (at least to leading logarithmic approximation).

C. Equations of motion for heavy meson LCDAs

In this appendix we show that the eom-constraint (2.1§) holds after including first order
relativistic corrections to the NR limit. We first evaluate the right-hand side of (2.17) using
our explicit results for the 3-particle LCDAs from (B.44)

* d¢ 0
D-2) / dn/ % e Va0 — 0 (1.6)

_ asCr 1 2
= {(g—l-an)md(w—m)

_ [2_“ <1 +1n”72)2 +1> +21n(m7;72w)1 H(m—aJ)}- (C.1)

m \ e (m—w
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For the expressions on the left-hand side of (R.15), we obtain

w Pp(w) —m>® P (w)

_ OS _ , bare _ asCr 2_w 1 'u2 _ _
=(m m°¥€) §(w —m) + = {m( +1In ME 1)6(m—w)

+ <§+2lnﬁ—2> O(w —m)— <§+21n 51—22+4> mo(w — m)} . (C.2)
and

p-z / dn [650m) — 65 ()]

_ O‘iF {[‘f: <E+lnﬁ> +21n(mn_172w)2} 0(m — w)

+<§+2ln’“‘72—2> H(w—m)}- (C.3)

(w—m)?

Noticing that

2

(m©S — mbare) = O‘ZiF < +31In— +4> m+ O(a?),

we see that the equation of motion (R.1§) is indeed fulfilled after including the o, correc-
tions.

D. Solution of RGE for ¢z(w) in WW approximation

We derive the solution of the evolution equation ([.20) for the B-meson LCDA ¢5(w;p),
ignoring the possible mixing with 3-particle LCDAs and neglecting the light quark mass
m. We follow the analysis in [BH], where a closed form for the LCDA ¢} (w;u) to LL
approximation has been given. When the 3-particle LCDAs are neglected, ¢5(w; ) can
be related to ¢5(w; ) by the Wandzura-Wilczek relation (B-I7). This is also reflected in

the leading-order result for the anomalous dimension kernels ’y(_l)(w, W'; p) from (B.39) and
Wgrl)(w,w’;,u) from (B.27). Noticing that

U r_
—wi do {(F(l) In ——2) S(w—w) -1 M} (F(l) 1n£—2) O(w—n),

dw n cusp cusp

(D.1)
[ an s {‘”% /ond% [%U - /old?m 1o
-/ ot - ) - )
= Ooodnf( ) [GS:S)L’ (D:2)
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/O‘X’ dn f(n) {_w% /017 dTw, {%] +} :w% /0°° :n(ldi x) /om lc—li/y Jli+y)

Sy (" w z)) — flw)] = - M
= [T s ieasm-sen= [Tao [S0=2] o

we find that the anomalous dimensions fulfill the relation
d " dw' (1) (

¢ [Tdw ooy W
wdo.) 0 7] f)/— LU,(,U,,LL) 7—{- (Wﬂ?vﬂ) (D4)

Therefore, the functions @5 (w; p) = wdgp(w; ) /dw and ¢ 5 (w; i) obey the same evolution
equation to LL approximation. Using an intermediate result from [BF], we write the solution
for ®5(w; p) as

dw > D™D +m —g)
P(w: ) =V "21EY w /
o) = e () (s 0) mZ: MLt TS

B o (57

_ V-2ypg (¥ di T4+ m—g)
- yg<uo> /0 7?8 0) erl—erg)r(Hm)r(m)

X {m@(w—w') <%)_m+ (g—m)o(w —w) <i)m_g} , (D.5)

U.)/

&le

with V' and ¢ from (§.15), (f.16) and we assumed 0 < g < 1. We finally perform the
w-integral to obtain ¢ (w;p) from ®;(w;p), and the summation over m which leads to
hypergeometric functions with the result,

¢§(w;u)=ev‘2”gr(17_))/o difﬁg( ko) <i>g

X {H(w — ') % oF1(1—-g,1—9,1,0 Jw)
O — w) (%)_g JFi(1—g,1—g, 1,w/w')} . (D.6)
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